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Abstract

While confidence intervals for finite quantities are well-established, constructing confidence
bands for objects of infinite dimension, such as functions, poses challenges. In this paper, we
explore the concept of parametric confidence bands for functional data with an orthonormal
basis. Specifically, we revisit the method proposed by Sun and Loader, which yields confidence
bands for the projection of the regression function in a fixed-dimensional space. This approach
can introduce bias in the confidence bands when the dimension of the basis is misspecified.
Leveraging this insight, we introduce a corrected, unbiased confidence band. Surprisingly, our
corrected band tends to be wider than what a naive approach would suggest. To address this, we
propose a model selection criterion that allows for data-driven estimation of the basis dimension.
The bias is then automatically corrected after dimension selection. We illustrate these strategies
using an extensive simulation study. We conclude with an application to real data.

Keywords: functional data, repeated data, confidence band, Kac-Rice formulae, bias, dimension
selection
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1 Introduction33

Functional data analysis is widely used for handling complex data with smooth shapes, finding34

applications in diverse fields such as neuroscience (e.g., EEG data, Zhang (2020)), psychology (e.g.,35

mouse-tracking data, Quinton et al. (2017)), and sensor data from daily-life activities (Jacques and36

Samardžić (2022)). It consists in estimating a function, which is an object of infinite dimension. It is37

important to accompany the function estimate with a measure of uncertainty, for example through38

a simultaneous confidence band. This task presents several challenges: the confidence band must39

control the simultaneous functional type-I error rate, as opposed to point-wise rates; it must strike40

a balance between being sufficiently conservative to maintain a confidence level while not being41

overly so as to render it meaningless; and the method used to construct this confidence band should42

be computationally feasible for practical application (Ramsay (2005)).43

We consider several independent observations of the same function, i.e., noisy functional data. To44

analyze this noisy data, a classic approach consists in either averaging pointwise the data, applying45

a kernel function to smooth the noise or projecting the data onto a functional space defined by a46

family of functions (Kokoszka and Reimherr (2017) Chapter 3, Li, Qiu, and Xu (2022)). The pointwise47

empirical mean is not a function but a vector of estimated discrete points. On the other hand,48

with the two other approaches, the targeted function is then an approximation of the true function49

and obtained confidence bands are thus bands of this approximated function. In such context,50

several methods have been proposed to construct a confidence band that controls the simultaneous51

functional type-I error rate. In the case of a single individual (no repetition) but with many time52

points, some methods study the asymptotic distribution of the infinity norm between the targeted53

approximated function and its estimator, the asymptotics being in the number of time points (Hall54

(1991), Claeskens and Van Keilegom (2003)). These approaches only work for large datasets in55

time and are likely to be too conservative otherwise. For small samples, bootstrap methods have56

been developed to compute the confidence band (Neumann and Polzehl (1998), Claeskens and Van57

Keilegom (2003)), but with a high computational cost. Another approach consists in constructing58

confidence bands based on the volume-of-tube formula. Sun and Loader (1994) studied the tail59

probabilities of suprema of Gaussian random processes. This approach is based on an unbiased linear60
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estimator of the regression function, which corresponds to a band of the approximated targeted61

function. Zhou, Shen, and Wolfe (1998) used the volume-of-tube formula for estimation by regression62

splines. Krivobokova, Kneib, and Claeskens (2010) applied this method for the construction of63

confidence bands using penalized spline estimators. Bunea, Ivanescu, and Wegkamp (2011) propose64

a threshold-type estimator and derive error bounds and simultaneous confidence bands. In the case65

of several observations of the same function, Liebl and Reimherr (2023) proposed a method based66

on random field theory and the volume-of-tube formula, leveraging the Kac-Rice formula. Their67

approach introduces a quantile that varies with location, which allows to achieve their fairness68

property. Their confidence band uses an unbiased estimator. Unlike other methods, it does not69

require estimating the full covariance function of the estimator, but only its diagonal, which reduces70

computational time. From a practical viewpoint, Sachs, Brand, and Gabriel (2022) introduced a71

package to popularize simultaneous confidence bands in the context of survival analysis. Telschow72

and Schwartzman (2022) propose a simultaneous confidence band based on the Gaussian kinematic73

formula. Again, it assumes access to an asymptotically unbiased estimator of the function of interest.74

The coverage is thus guaranteed in the asymptotic setting after removing the bias and by targeting75

the approximated smoothed function. Their paper considers the non-gaussian and non-stationary76

cases. Wang (2022) proposed a simultaneous Kolmogorov-Smirnov confidence band by modeling77

the error distribution, thus avoiding the estimation of the covariance structure of the underlying78

stochastic process. They rely on B-splines for the estimation of the mean curve. Note that recent79

extensions have been proposed in Telschow et al. (2023) to construct simultaneous confidence80

bands, or based on conformal prediction in Diquigiovanni, Fontana, and Vantini (2022), or having a81

prediction goal in mind in Hernández, Cugliari, and Jacques (2024) by considering functional time82

series data. These different papers use approximation of the function of interest and do not deal with83

the non asymptotic associated bias.84

We want to work in the non asymptotic setting and to propose confidence band of the original true85

function, not only on the approximated one (obtained by smoothing kernel or by projection). We do86

not work with the empirical mean estimator for two main reasons. It does not inherit functional87

properties, especially its regularity. Furthermore, the dimension of the empirical mean estimator is88

larger than the dimension of a projection or kernel estimator and this induces a larger variance and89

wider confidence band. Thus we focus on functional estimator.90

The difference between the original function and its approximation is a functional (deterministic)91

bias that depends on the quality of the kernel or the projection. This bias may be neglected in the92

asymptotic setting where the number of observations goes to infinity, but not with finite sample sizes.93

It has to be taken into account in the construction of the confidence band. Both methods (kernel and94

projection) rely on the choice of an hyperparameter, the kernel bandwidth in the first case and the95

dimension of the functional projection basis in the second. The choice of this hyperparameter is96

crucial to control the type-I-error rate of the confidence band viewed as a band of the true function97

in a non-asymptotic setting. This is the question we explore in this paper.98

Sun and Loader (1994) proposed a bias correction for a particular class of functions but left the99

smoothing parameter choice open, leading to an unusable estimator. In the nonparametric framework,100

the bias is approximated using the estimator of the second derivative of the underlying mean function101

(Xia (1998)). But in general, there is a lack of discussion on how to handle the bias of the functional102

estimator, even in the simple case of a functional space of finite dimension. Hard-thresholding103

approaches, cross-validation methods (Li, Qiu, and Xu (2022)) or model selection framework could104

be used to select the best dimension. However, these approaches need to be adapted to the specific105

case of controlling the level of a confidence band. Few references exist on this subject. For example,106

while the model selection paradigm has been extensively studied in the literature, in multivariate107

statistics or functional data analysis (e.g., Goepp, Bouaziz, and Nuel (2025), Aneiros, Novo, and Vieu108
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(2022), Basna, Nassar, and Podgórski (2022)), it has not been explored in the context of confidence109

band construction.110

The objective of this paper is to address the bias problem in confidence band construction for a111

general function, in the non-asymptotic setting with respect to the number of individuals and the112

number of time points. We adopt the point of view of projecting data onto a functional space, because113

the functional bias is easier to study and control, than when smoothing data with a kernel. Especially,114

when the family is an orthonormal basis, e.g., the Legendre basis (with the standard scalar product) or115

Fourier (with another scalar product), the projection is explicit and it is possible to obtain theoretical116

results. Moreover, the functional space offers a key advantage: it reduces the problem of inference117

to the estimation of coefficients, for example by least squares or maximum likelihood estimation.118

The function estimator is then simply an average after projection onto the functional base (Ramsay119

(2005)). Our contributions are as follows:120

• we disentangle the bias issue by explicitly defining the parameter of interest within the121

approaches of Sun and Loader (1994) and Telschow et al. (2023);122

• we propose a confidence band for the true function of interest, including a bias correction.123

This provides a collection of debiased confidence bands. We also propose a criteria to select124

the best band, by splitting the sample into two sub-samples;125

• we propose a second heuristic method for selecting the dimension of the approximation space,126

treating it as a model selection problem, with a trade-off between conservatism and confidence127

level assurance; this approach does not correct the bias of each band of the collection but128

selects a band with a negligible bias;129

• we illustrate the proposed strategies and compare them to cross-validation or threshold ap-130

proaches;131

• we also illustrate the impact of the choice of the functional family, including non-orthonormal132

families.133

The paper is organized as follows: Section 2 introduces the functional regressionmodel, the considered134

functional family and the corresponding approximate regression models, as well as an estimator135

defined in the finite space, along with descriptions of the error terms. In Section 3, we propose a136

confidence band for the approximate regression function in the space of finite dimension, where the137

dimension is fixed. Section 4 proposes a strategy to construct a confidence band for the true function.138

This last confidence band being too conservative, Section 5 introduces a model selection criterion139

to select the best confidence band, doing a trade-off between conservatism and confidence level140

assurance. Section 6 illustrates the different estimating procedures of the confidence band. Section 7141

proposes an application on real data. Section 8 ends the paper by a conclusion and discussion of142

perspectives.143

2 Statistical Model144

In this paper, we consider time series as discrete measurements of functional curves. We first present145

the general functional regression model (Section 2.1) where the regression function belongs to a146

finite functional family of dimension 𝐿∗. In practice, this dimension 𝐿∗ is unknown and we will147

work on functional space of dimension 𝐿. The regression model on the finite family of functions is148

presented in Section 2.2, and an estimator is proposed in Section 2.3, with a description of the error149

terms.150

In the rest of the paper, we consider the space 𝐿2([0, 1]) with its standard scalar product < 𝑓1, 𝑓2 >=151

∫10 |𝑓1(𝑡)𝑓2(𝑡)|𝑑𝑡, for 𝑓1, 𝑓2 ∈ 𝐿2([0, 1]). The notation 𝑉 𝑒𝑐𝑡 denotes the linear span.152
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2.1 Functional regression model153

Let 𝑦𝑖𝑗 be the measure at fixed time 𝑡𝑗 ∈ [𝑎, 𝑏] for individual 𝑖 = 1, … , 𝑁, with 𝑗 = 1, … , 𝑛. The case154

with time observations dependent of the individuals is a natural extension of this case, but is not155

treated in this paper. We restrict ourselves to [𝑎, 𝑏] = [0, 1], without loss of generality. We assume156

these observations are discrete-time measurements of individual curves, which are independent157

and noisy realisations of a common function 𝑓 that belongs to a functional space. Thus for each158

individual 𝑖, we consider the following functional regression model159

𝑦𝑖𝑗 = 𝑓 (𝑡𝑗) + 𝜀𝑖𝑗,

where 𝜀𝑖. = (𝜀𝑖1, … , 𝜀𝑖𝑛) is the measurement noise assuming that the 𝜀𝑖 are independent.160

For each individual 𝑖 = 1, … , 𝑁, we denote 𝑦𝑖. = (𝑦𝑖1, … , 𝑦𝑖𝑛), 𝑡. = (𝑡1, … , 𝑡𝑛) and 𝑓 (𝑡.) = (𝑓 (𝑡1), … , 𝑓 (𝑡𝑛))161

the 𝑛 × 1 vectors of the observations, times and function 𝑓 evaluated in 𝑡., respectively. We also denote162

y = (𝑦1., … , 𝑦𝑁 .) the whole matrix of observations.163

The unknown regression function 𝑓 lives in an infinite space and can not be directly estimated.164

First we reduce the dimension by projecting 𝑓 on a function space. Let us consider 𝐿∗ functions165

(𝐵𝐿
∗

ℓ )1≤ℓ≤𝐿∗ assumed to be linearly independent and the corresponding functional space 𝒮 𝐿∗ =166

𝑉 𝑒𝑐𝑡((𝑡 ↦ 𝐵𝐿
∗

ℓ (𝑡))1≤ℓ≤𝐿∗). Then, for any 𝑓 ∈ 𝒮 𝐿∗ , there exists a unique vector of coefficients167

(𝜇𝐿
∗

ℓ )1≤ℓ≤𝐿∗ such that, for all 𝑡, 𝑓 (𝑡) = ∑𝐿∗
ℓ=1 𝜇

𝐿∗
ℓ 𝐵𝐿

∗
ℓ (𝑡). The regression function 𝑓 verifies the following168

assumption:169

Assumption 1. The function 𝑓 belongs to the space 𝒮 𝐿∗ of dimension 𝐿∗. It is denoted 𝑓 𝐿
∗
and170

defined as:171

𝑓 (𝑡) = 𝑓 𝐿
∗
(𝑡) =

𝐿∗

∑
ℓ=1

𝜇𝐿
∗

ℓ 𝐵𝐿
∗

ℓ (𝑡).

Many functional spaces are available in the literature, as Splines, Fourier or Legendre families. We172

introduce the following assumption:173

Assumption 2. The functional family (𝑡 ↦ 𝐵𝐿
∗

ℓ (𝑡))1≤ℓ≤𝐿∗ is orthonormal with respect to the standard174

scalar product < ., . >.175

Note that if Assumption 2 holds, one get 𝜇𝐿
∗

ℓ =< 𝑓 𝐿
∗
, 𝐵𝐿

∗
ℓ > for ℓ = 1, … , 𝐿∗. The Legendre family is176

orthonormal, the Fourier family is orthogonal for the standard scalar product (but not orthonormal),177

and the B-splines family is not orthogonal. We will illustrate the impact of using one family or the178

other in Section 6.6.179

We also consider a functional noise through the following assumption.180

Assumption 3. The sequence 𝜀𝑖 is functional and allows Karhunen-Loève 𝐿2 representation: there181

exists a sequence of coefficients (𝑐𝑖ℓ)1≤ℓ such that182

𝜀𝑖𝑗 = ∑
ℓ≥1

𝑐𝑖ℓ𝜙ℓ(𝑡𝑗),

where the functions (𝜙ℓ)1≤𝐿 can be written through eigenvalues and eigenfunctions of the covariance183

matrix 𝑐𝑜𝑣(𝜀𝑖𝑗, 𝜀𝑖𝑗′). Practically, we assume this sum to be finite, as done for example in Chen and184

Song (2015): there exists 𝐿𝜀 such that185

𝜀𝑖𝑗 = ∑
1≤𝐿≤𝐿𝜀

𝑐𝑖ℓ𝜙ℓ(𝑡𝑗).

We also assume that the coefficients are Gaussian: for all 𝑖 = 1, … , 𝑁 and ℓ = 1, … , 𝐿𝜀,186

𝑐𝑖ℓ ∼𝑖𝑖𝑑 𝒩 (0, 𝜎2).
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Note that we could also work with elliptic distributions instead of the Gaussian distribution. The187

results of the paper would be the same but require more technical details. For simplicity, we focus188

on the Gaussian case.189

Assumption 1 and Assumption 3 imply that each curve 𝑦𝑖 belongs to a finite family: for 𝑗 = 1, … , 𝑛,190

𝑦𝑖𝑗 =
𝐿∗

∑
ℓ=1

𝜇𝐿
∗

ℓ 𝐵𝐿
∗

ℓ (𝑡𝑗) +
𝐿𝜀

∑
ℓ=1

𝑐𝑖ℓ𝜙ℓ(𝑡𝑗).

As the observations are recorded at discrete time points (𝑡𝑗)1≤𝑗≤𝑛, for 𝐿 ∈ ℕ, let us denote B𝐿 the191

matrix of 𝑛 × 𝐿 with coefficient in row 𝑗 and column ℓ equal to 𝐵𝐿ℓ (𝑡𝑗), and the basis for the noise192

Φ𝐿𝜀 = (𝜙ℓ(𝑡𝑗))1≤ℓ≤𝐿𝜀,1≤𝑗≤𝑛. Let us introduce 𝑐𝑖. = (𝑐𝑖1, … , 𝑐𝑖𝐿𝜀) the 𝐿𝜀 × 1 vector. Then 𝜀𝑖. = Φ𝐿𝜀𝑐𝑖.. The193

vectors 𝑦𝑖. ∈ ℝ𝑛 are thus independent and 𝑦𝑖 ∼ 𝒩𝑛(𝑓 (𝑡.), 𝜎2Σ𝐿
𝜀
) with Σ𝐿

𝜀
= Φ𝐿𝜀(Φ𝐿𝜀)𝑇.194

The objective of this paper is to construct a tight confidence bound for 𝑓 𝐿
∗
using data (𝑦𝑖𝑗)𝑖𝑗. The main195

challenge is that the true dimension 𝐿∗ is unknown. In practice, we can only work with a projected196

version on the space 𝒮 𝐿 with 𝐿 ∈ {𝐿min, … , 𝐿max}. Two issues are introduced: the bias induced by197

this projection and the choice of 𝐿. In this paper, we treat both of them in a non asymptotic setting198

to construct confidence band with a control level.199

In the rest of the paper, we will work with a collection of models defined by the dimension 𝐿 with200

𝐿 ∈ {𝐿min, … , 𝐿max}, 𝐿max being chosen to be sufficiently large by the user, expecting that 𝐿∗ ≤ 𝐿max.201

𝐿max has to be large enough to do overfitting. We will study the functional bias and its asymptotic202

behavior. The we will propose different strategies to choose the best dimension among the different203

collections.204

First, in Section 2.2 and Section 2.3, we define for a fixed 𝐿 the corresponding regression model and205

its estimator. Then Section 3, Section 4 and Section 5 will introduce the different bandwidths.206

2.2 Approximation of the model on a finite family207

Let 𝑓 𝐿
∗
∈ 𝒮 𝐿∗ with 𝐿∗ unknown, and consider the space 𝒮 𝐿 for 𝐿 fixed in {𝐿min, … , 𝐿max}. As 𝒮 𝐿 is208

the linear span of linearly independent functions, there is always a unique vector 𝜇𝐿 of coefficients209

defining 𝑓 𝐿(𝑡) = ∑𝐿
ℓ=1 𝜇

𝐿
ℓ 𝐵𝐿ℓ (𝑡) = 𝐵𝐿(𝑡)𝜇𝐿 such that210

𝑓 𝐿 = arg min
𝑓 ∈𝒮 𝐿

{‖𝑓 𝐿
∗
− 𝑓 ‖22}.

If the family is orthonormal, it corresponds to the projected coefficients 𝜇𝐿ℓ :211

𝜇𝐿ℓ ∶=< 𝑓 𝐿
∗
, 𝐵𝐿ℓ > .

We know that under Assumption 1, 𝑓 𝐿
∗,𝐿∗ = 𝑓 𝐿

∗
. Moreover under Assumption 2,212

𝜇𝐿ℓ = 𝜇𝐿
∗

ℓ 𝑓 𝑜𝑟 ℓ = 1, … ,min(𝐿, 𝐿∗).

It is interesting to note that this is not true when the basis is not orthonormal.213

In practice, data are observed at discrete time, we consider the operator P𝐿 defined as the matrix214

P𝐿 = ((B𝐿)𝑇B𝐿)−1(B𝐿)𝑇 of size 𝐿 × 𝑛. This coincides with the orthogonal projection when we deal215

with an orthonormal basis, but this formula also holds for non orthonormal family, coming back to216
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the least square estimator on a specified family. Then we define the coefficients 𝜇𝐿 which are the217

coefficients of 𝜇𝐿 approximated on the vector space, denoted S𝐿, defined by the matrix B𝐿.218

𝜇𝐿 ∶= P𝐿B𝐿∗𝜇𝐿
∗
.

Note that219

• When 𝐿 ≥ 𝐿∗, when 𝑛 > 𝐿, we have for ℓ = 1, … , 𝐿∗,220

𝜇𝐿ℓ = 𝜇𝐿
∗

ℓ .

• When 𝐿 < 𝐿∗, for ℓ = 1, … , 𝐿,221

𝜇𝐿ℓ ≠ 𝜇𝐿
∗

ℓ .

The corresponding finite approximated regression function is denoted 𝑓𝐿 and is defined, for all222

𝑡 ∈ [0, 1], as223

𝑓𝐿(𝑡) = 𝐵𝐿(𝑡)𝜇𝐿.

We can observe the following, linking 𝐿, 𝐿∗ and the number of timepoints 𝑛: under Assumption 1 and224

Assumption 2, the diagonal elements of P𝐿B𝐿∗ are such that for ℓ = 1, … ,min(𝐿, 𝐿∗), [P𝐿B𝐿∗]ℓℓ = 1.225

Moreover,226

• When 𝑛 → ∞, for ℓ = 1, … , 𝐿227

𝜇𝐿ℓ → 𝜇𝐿
∗

ℓ .

• If 𝑛 > 𝐿∗, then 𝑓 𝐿
∗
= 𝑓 𝐿

∗,𝐿∗ = 𝑓𝐿
∗,𝐿∗ .228

The last point is particularly interesting, relating 𝑛 the number of timepoints to the true level 𝐿∗ such229

that the discretized functions correspond to the true one.230

2.3 Estimator231

Let 𝐿 ∈ {𝐿min, … , 𝐿max}. This section presents the least square estimator of the regression function232

on the space of dimension 𝐿 defined by the family B𝐿 and discusses its error, i.e. its bias and its233

behavior with respect to 𝐿 and 𝑛.234

2.3.1 Estimation of the regression function235

When considering the estimation of the regression function 𝑓 𝐿
∗
on the space of dimension 𝐿 defined236

by the family B𝐿, we do not directly estimate 𝑓 𝐿
∗
but its projection on this finite space, which237

corresponds to the projected function 𝑓𝐿(𝑡) and its associated coefficients (𝜇𝐿ℓ )1≤ℓ≤𝐿.238

Definition 2.1. The vector of coefficients (𝜇𝐿ℓ )1≤ℓ≤𝐿 is estimated by the least square estimator 𝜇̂𝐿239

defined as:240

𝜇̂𝐿 ∶= 1
𝑁

𝑁
∑
𝑖=1

P𝐿𝑦𝑖..

For a fixed 𝑡 ∈ [0, 1], the estimator of the function 𝑓𝐿(𝑡) is defined by:241

̂𝑓
𝐿
(𝑡) =

𝐿
∑
ℓ=1

𝜇̂𝐿ℓ 𝐵
𝐿
ℓ (𝑡) = 𝐵𝐿(𝑡)𝜇̂𝐿. (1)
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Equation 1 directly implies that the estimator is thus the empirical mean of the functional approxi-242

mation of each individual vector of observations. Because we work with least squares estimators, we243

can easily study the error of estimation of 𝜇̂𝐿 and ̂𝑓
𝐿
.244

Proposition 2.1. Under Assumption 1 and Assumption 3, we have245

𝜇̂𝐿 ∼ 𝒩𝐿 (𝜇𝐿,
𝜎2

𝑁
Σ𝐿,𝐿

𝜀

𝐵 ) ,

where the 𝐿 × 𝐿 covariance matrix Σ𝐿,𝐿
𝜀

𝐵 is defined as Σ𝐿,𝐿
𝜀

𝐵 ∶= P𝐿Σ𝐿
𝜀
(P𝐿)𝑇 with Σ𝐿

𝜀
= Φ𝐿𝜀(Φ𝐿𝜀)𝑇.246

Moreover, 𝐵𝐿P𝐿𝑦𝑖 is a Gaussian process with mean 𝑓𝐿 and covariance function (𝑠, 𝑡) ↦247

𝜎2𝐵𝐿(𝑠)Σ𝐿,𝐿
𝜀

𝐵 (𝐵𝐿(𝑡))𝑇, and ( ̂𝑓
𝐿
− 𝑓𝐿) is a centered Gaussian process with covariance function248

𝐶𝐿 ∶ (𝑠, 𝑡) ↦ 𝜎2
𝑁 𝐵𝐿(𝑠)Σ𝐿,𝐿

𝜀

𝐵 𝐵𝐿(𝑡)𝑇.249

The proof is given in Appendix.250

Even if the estimator ̂𝑓
𝐿
is defined on the functional space associated to S𝐿, our approach consists251

in seeing it as an estimator of the function 𝑓 𝐿
∗
which lies in the space 𝒮 𝐿∗ . In that case, the error252

includes a functional approximation term due to the approximation of 𝑓 𝐿
∗
on the space 𝒮 𝐿, which253

will be nonzero if 𝐿 ≠ 𝐿∗. It corresponds to the bias of the estimator ̂𝑓
𝐿
, i.e. the difference between254

its expectation and the true 𝑓 𝐿
∗
. Indeed, recalling that 𝑓 𝐿

∗
= 𝑓𝐿

∗,𝐿∗ , the error of estimation can be255

decomposed into256

̂𝑓
𝐿
(𝑡) − 𝑓 𝐿

∗
(𝑡) = ̂𝑓

𝐿
(𝑡) − 𝑓𝐿(𝑡) + 𝑓𝐿(𝑡) − 𝑓𝐿

∗,𝐿∗(𝑡) =∶ 𝑆𝑡𝑎𝑡𝐿(𝑡) + 𝐵𝑖𝑎𝑠𝐿(𝑡), (2)

The first term 𝑆𝑡𝑎𝑡𝐿(𝑡) = ̂𝑓
𝐿
(𝑡) − 𝑓𝐿(𝑡) is the (unrescaled) statistics of the model. The second term257

𝐵𝑖𝑎𝑠𝐿(𝑡) = 𝔼( ̂𝑓
𝐿
(𝑡)) − 𝑓𝐿

∗,𝐿∗(𝑡) is the bias of the estimator ̂𝑓
𝐿
(𝑡) when estimating the true function258

𝑓𝐿
∗,𝐿∗(𝑡).259

Let us remark that this bias is different than the bias of the estimator ̂𝑓
𝐿
(𝑡) when estimating the260

projected function 𝑓𝐿 = 𝑓 𝐿
∗
, which is 0. The two terms defined in Equation 2 are more detailed in261

the two next subsections.262

2.3.2 Statistics263

The statistics of the model, 𝑡 ↦ 𝑆𝑡𝑎𝑡𝐿(𝑡) = ̂𝑓
𝐿
(𝑡) − 𝑓𝐿(𝑡), is a random functional quantity which264

depends on the estimator ̂𝑓
𝐿
. From Proposition 2.1, for any 𝑡 ∈ [0, 1], we define the centered and265

rescaled statistics 𝑍𝐿(𝑡):266

𝑍𝐿(𝑡) ∶=
𝑆𝑡𝑎𝑡𝐿(𝑡)

√Var(𝑆𝑡𝑎𝑡𝐿(𝑡))
=

̂𝑓
𝐿
(𝑡) − 𝑓𝐿(𝑡)

√𝐶𝐿(𝑡, 𝑡)
∼ 𝒩 (0, 1).

The covariance function can be naturally estimated using the observations 𝑦𝑖. as267

𝐶̂𝐿(𝑠, 𝑡) = 1
𝑁 − 1

𝑁
∑
𝑖=1

(𝐵𝐿(𝑠)P𝐿𝑦𝑖. − ̂𝑓
𝐿
(𝑠))(𝐵𝐿(𝑡)P𝐿𝑦𝑖. − ̂𝑓

𝐿
(𝑡)).
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2.3.3 Bias268

The bias is due to the fact that the estimation is potentially performed in a different (finite) space269

than the space where the true function 𝑓𝐿
∗,𝐿∗ lives. This is a functional bias, which is not random. It270

corresponds to the approximation of 𝑓 𝐿
∗
from 𝒮 𝐿∗ to the space 𝒮 𝐿. It can be written as follows:271

𝐵𝑖𝑎𝑠𝐿(𝑡) = 𝐵𝐿(𝑡)𝜇𝐿 − 𝐵𝐿
∗
(𝑡)𝜇𝐿

∗
.

It depends on 𝐿 and on the sample size through 𝜇𝐿. Let us describe its behavior. When 𝐿 < 𝐿∗ and272

the family is orthonormal, the approximation is the orthogonal projection and we have that273

𝐵𝑖𝑎𝑠𝐿(𝑡) =
𝐿
∑
ℓ=1

𝐵𝐿ℓ (𝑡)𝜇𝐿ℓ −
𝐿∗

∑
ℓ=1

𝐵𝐿
∗

ℓ (𝑡)𝜇𝐿
∗

ℓ =
𝐿∗

∑
ℓ=𝐿+1

𝐵𝐿
∗

ℓ (𝑡)𝜇𝐿
∗

ℓ .

From Proposition 2.1, we can directly deduce the following proposition:274

Proposition 2.2. Under Assumption 1 and Assumption 3, the bias is, for all 𝑡 ∈ [0, 1],275

• for 𝐿 < 𝐿∗, 𝐵𝑖𝑎𝑠𝐿(𝑡) ≠ 0,276

• for 𝐿 ≥ 𝐿∗, 𝐵𝑖𝑎𝑠𝐿(𝑡) = 0.277

Note that the bias is not 0 even when 𝑛 → ∞, as soon as 𝐿 < 𝐿∗. Thus, a correct selection of the278

dimension 𝐿 is an issue.279

In the next section, we explain how we use this property to derive confidence bands of 𝑓𝐿 and 𝑓 𝐿.280

3 Preliminary step: Confidence Bands of 𝑓𝐿 and 𝑓 𝐿 for a fixed 𝐿281

In this Section, we present some well known results on constructing a confidence band of 𝑓𝐿 and 𝑓 𝐿.282

As its definition and properties are essential to construct the next steps about confidence band of283

𝑓 𝐿
∗
, we have decided to recall them in details.284

The objective is to construct a confidence band for the two functions 𝑓𝐿 and 𝑓 𝐿, based on the285

observations y, for a given value 𝐿 ∈ {𝐿min, … , 𝐿max}. The band for 𝑓𝐿 enters the framework286

proposed by Sun and Loader (1994) which relies on an unbiased and linear estimator of the function287

as the estimator ̂𝑓
𝐿
is an unbiased estimator of 𝑓𝐿. We recall in Section 3.1 the construction of this288

confidence band which attains a given confidence level in a non-asymptotic setting, that is for a finite289

number of observations 𝑛 for each individual. Then in Section 3.2, we prove that the confidence band290

proposed by Sun and Loader (1994) can be viewed as a confidence band for 𝑓 𝐿 with an asymptotic291

confidence level, the asymptotic framework being considered when 𝑛 → ∞.292

3.1 Confidence band for 𝑓𝐿293

Consider 1 − 𝛼 a fixed confidence level. The aim is to find a function 𝑑𝐿 such that294

ℙ (∀𝑡 ∈ [0, 1], ̂𝑓
𝐿
(𝑡) − 𝑑𝐿(𝑡) ≤ 𝑓𝐿(𝑡) ≤ ̂𝑓

𝐿
(𝑡) + 𝑑𝐿(𝑡)) = 1 − 𝛼.

Consider the normalized statistics 𝑍𝐿(𝑡) which is a centered and reduced Gaussian process. We want295

to find the quantile 𝑞𝐿 satisfying296
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𝑞𝐿 = argmin
𝑞

{ℙ ( max
𝑡∈[0,1]

|𝑍𝐿(𝑡)| ≤ 𝑞) = 1 − 𝛼} . (3)

Thenwe can take 𝑑𝐿(𝑡) = 𝑞𝐿√𝐶𝐿(𝑡, 𝑡). The covariance function 𝐶𝐿(𝑡, 𝑡) can be replaced by its estimator297

𝐶̂𝐿(𝑡, 𝑡), making the distribution a Student’s distribution with 𝑁 − 1 degrees of freedom. Thus, it only298

requires to be able to compute the critical value 𝑞𝐿.299

This can be done following Sun and Loader (1994) who propose a confidence band for a centered300

Gaussian process. Their procedure is based on an unbiased linear estimator of the function of interest,301

which is the case for ̂𝑓
𝐿
when we consider a band for 𝑓𝐿. We recall their result in the following302

proposition, the computation of the value 𝑞𝐿 is detailed thereafter. Note that the presentation of303

Telschow and Schwartzman (2022) is similar to the one adopted in this paper.304

Theorem 3.1 (Sun and Loader (1994)). Set Assumption 1 and Assumption 3 and a probability 𝛼 ∈ [0, 1].305

Then, we have306

ℙ (∀𝑡 ∈ [0, 1], | ̂𝑓
𝐿
(𝑡) − 𝑓𝐿(𝑡)| ≤ 𝑑̂𝐿(𝑡)) = 1 − 𝛼

with307

𝑑̂𝐿(𝑡) = 𝑞̂𝐿√𝐶̂
𝐿(𝑡, 𝑡)/𝑁

and 𝑞̂𝐿 defined as the solution of the following equation, seen as a function of 𝑞𝐿:308

𝛼 = ℙ (|𝑡𝑁−1| > 𝑞𝐿) +
‖𝜏𝐿‖1
𝜋

(1 +
(𝑞𝐿)2

𝑁 − 1
)
−(𝑁−1)/2

, (4)

with (𝜏𝐿)2(𝑡) = 𝜕12𝑐(𝑡 , 𝑡) = 𝑉 𝑎𝑟(𝑍 ′
𝐿(𝑡)) where we denote 𝜕12𝑐(𝑡 , 𝑡) the partial derivatives of a function309

𝑐(𝑡 , 𝑠) in the first and second coordinates and then evaluated at 𝑡 = 𝑠.310

We can thus deduce a confidence band of level 1 − 𝛼 for 𝑓𝐿:311

𝐶𝐵1(𝑓
𝐿) = {∀𝑡 ∈ [0, 1], [ ̂𝑓

𝐿
(𝑡) − 𝑑̂𝐿(𝑡); ̂𝑓

𝐿
(𝑡) + 𝑑̂𝐿(𝑡)]} .

The value 𝑞̂𝐿 is defined implicitly in Equation 4 which involves the unknown and not explicit quantity312

𝑡 ↦ 𝜏𝐿(𝑡). Liebl and Reimherr (2023) propose to estimate 𝜏𝐿(𝑡), for all 𝑡, by313

̂𝜏𝐿(𝑡) = (𝑉 𝑎𝑟((𝑈 𝐿)′1(𝑡), … , (𝑈 𝐿)′𝑁(𝑡))
1/2

= ( 1
𝑁 − 1

𝑁
∑
𝑖=1

((𝑈 𝐿)′𝑖 (𝑡) −
1
𝑁

𝑁
∑
𝑗=1

(𝑈 𝐿)′𝑗 (𝑡))
2

)

1/2

,

where 𝑈 𝐿
𝑖 (𝑡) = (𝑃𝐿𝑦𝑖.(𝑡)− ̂𝑓

𝐿
(𝑡))/(𝐶̂𝐿(𝑡))1/2 and (𝑈 𝐿)′𝑖 is a smooth version of the differentiated function314

𝑈 𝐿
𝑖 . Then we take the 𝐿1-norm of ̂𝜏𝐿.315

Let us describe the behavior of 𝑑̂𝐿:316

• ‖𝑑̂𝐿‖∞ increases with 𝐿.317

• When the functions (𝐵𝐿ℓ )1≤ℓ≤𝐿 form an orthonormal family, ‖𝑑̂𝐿‖∞ increases with 𝐿 until 𝐿 = 𝐿∗318

and then ‖𝑑̂𝐿‖∞ is constant with 𝐿.319

Their behavior will be illustrated with different function families in Section 6.320
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3.2 Asymptotic confidence band for 𝑓 𝐿
321

Note that in the asymptotic framework 𝑛 → ∞, the previous definition of 𝑑̂𝐿 induces a natural322

asymptotic confidence band for the function 𝑓 𝐿. Indeed, we can prove that323

Theorem 3.2. Set Assumption 1 and Assumption 3 and a probability 𝛼 ∈ [0, 1]. Then, we have,324

lim
𝑛→+∞

ℙ (∀𝑡 ∈ [0, 1], | ̂𝑓
𝐿
(𝑡) − 𝑓 𝐿(𝑡)| ≤ 𝑑̂𝐿(𝑡)) ≥ 1 − 𝛼,

with 𝑑̂𝐿(𝑡) = 𝑞̂𝐿√𝐶̂
𝐿(𝑡, 𝑡)/𝑁 and 𝑞̂𝐿 is defined as the solution of Equation 4.325

The proof is given in Appendix.326

Then a confidence band for 𝑓 𝐿 at the asymptotic confidence level 1 − 𝛼 for a large number of327

observations 𝑛 is given by328

𝐶𝐵(𝑓 𝐿) = {∀𝑡 ∈ [0, 1], [ ̂𝑓
𝐿
(𝑡) − 𝑑̂𝐿(𝑡); ̂𝑓

𝐿
(𝑡) + 𝑑̂𝐿(𝑡)]} .

4 Method 1: Confidence Band of 𝑓 𝐿∗ by correcting the bias329

The function of interest is 𝑓 𝐿
∗
= 𝑓𝐿

∗,𝐿∗ , rather than 𝑓𝐿. Therefore, our objective is to construct a330

confidence band for 𝑓 𝐿
∗
. However, an unbiased estimator of 𝑓 𝐿

∗
is not available by definition, since331

the true dimension 𝐿∗ is unknown. We propose instead to work with the estimator ̂𝑓
𝐿
and to debias332

the corresponding confidence band.333

To do this, we use the decomposition between the bias term and the statistical term, outlined in334

Equation 2. The idea is to bound the infinite norm of these two terms. A first strategy is to bound335

each term separately, then add the two bounds to construct the confidence band. However, this336

approach tends to produce a band that is too large and too conservative. This is because applying the337

infinite norm to each term before bounding them does not take into account the functional nature of338

the two terms.339

A second strategy is to retain the functional aspect by bounding the infinity norm of the sum of the340

two functional terms. This approach is detailed in this section.341

In Section 4.1, we first rewrite the band as a band around 𝑓𝐿(𝑡). We need to estimate the band bound342

and the bias. To do this, we divide the sample into two sub-samples. This choice is not ideal because343

it increases the variability of the estimators. But at least, it provides independence between the344

estimators of the two quantities, which makes it possible to establish the theoretical coverage of the345

final band. More precisely, we use a first subsample y1 to estimate the bound defined in Section 3. A346

second subsample y2 is used to estimate the bias term (without the infinite norm). This results in a347

pointwise correction of the bias, and the final confidence band is centered around ̂𝑓
𝐿max,𝐿∗ .348

This procedure provides a collection of confidence bands, for 𝐿 ∈ {𝐿min, … , 𝐿max}with variable width.349

Then, in Section 4.2, we propose a criterion to select the “best” band by minimizing its width. We350

discuss the band thus obtained at the end of the section and its limits.351

4.1 Construction of the band of 𝑓 𝐿∗ for a given 𝐿352

We introduce two independent sub-samples y1 and y2 of y of length 𝑁1 and 𝑁2 such that 𝑁1+𝑁2 = 𝑁.353
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We use the first sub-sample y1 to calculate ̂𝑓1
𝐿
(𝑡), an estimator of 𝑓𝐿(𝑡) and a functional bound354

denoted 𝑑̂𝐿1 that controls the bias term 𝑓𝐿(𝑡) − ̂𝑓1
𝐿
(𝑡). This bound is defined in Section 3 applied on355

y1, for a given level 𝛼, such that:356

ℙ (∀𝑡 ∈ [0, 1], −𝑑̂𝐿1 (𝑡) ≤ 𝑓𝐿(𝑡) − ̂𝑓
𝐿
1(𝑡) ≤ 𝑑̂𝐿1 (𝑡)) = 1 − 𝛼. (5)

Next, we need to control the bias 𝐵𝑖𝑎𝑠𝐿(𝑡) = 𝑓𝐿(𝑡) − 𝑓 𝐿
∗
(𝑡). Recall that when 𝐿max is sufficiently large357

and 𝑛 > 𝐿max, we have 𝑓 𝐿
∗
= 𝑓𝐿max,𝐿∗ . We therefore need to control the 𝐵𝑖𝑎𝑠𝐿(𝑡) = 𝑓𝐿(𝑡) − 𝑓𝐿max,𝐿∗(𝑡).358

It would be tempting to replace 𝐵𝑖𝑎𝑠𝐿(𝑡) by its estimation based on the second sample y2, but this359

would introduce an estimation error that we also need to control, in the same spirit as what is360

done in Lacour, Massart, and Rivoirard (2017). We can again use Section 3 to compute the function361

𝑑̂𝐿,𝐿max
2 (𝑡) on the sample y2, and the functional estimators ̂𝑓

𝐿
2(𝑡) and

̂𝑓
𝐿max,𝐿∗

2 (𝑡) of 𝑓𝐿(𝑡) and 𝑓𝐿max,𝐿∗(𝑡),362

respectively. This allows us to construct the following band for 𝑓𝐿(𝑡) − 𝑓𝐿max,𝐿∗ for a confidence level363

1 − 𝛽,364

ℙ (∀𝑡 ∈ [0, 1], −𝑑̂𝐿,𝐿max
2 (𝑡) ≤ 𝑓𝐿max,𝐿∗(𝑡) − 𝑓𝐿(𝑡) − ( ̂𝑓

𝐿max,𝐿∗

2 (𝑡) − ̂𝑓
𝐿
2(𝑡)) ≤ 𝑑̂𝐿,𝐿max

2 (𝑡)) = 1 − 𝛽. (6)

Combining Equation 5 and Equation 6, we can provide a debiased confidence band of 𝑓 𝐿
∗
(𝑡).365

Proposition 4.1. Let us define366

̂𝜃𝐿1 (𝑡) ∶= −𝑑̂𝐿1 (𝑡) − 𝑑̂𝐿,𝐿max
2 (𝑡) + ̂𝑓

𝐿max,𝐿∗

2 (𝑡) − ̂𝑓
𝐿
2(𝑡)

̂𝜃𝐿2 (𝑡) ∶= 𝑑̂𝐿1 (𝑡) + 𝑑̂𝐿,𝐿max
2 (𝑡) + ̂𝑓

𝐿max,𝐿∗

2 (𝑡) − ̂𝑓
𝐿
2(𝑡),

where 𝑑̂𝐿1 (𝑡) is defined on sample y1 by Equation 5 for a level 𝛼 and 𝑑̂𝐿,𝐿max
2 (𝑡) is defined on sample y2 by367

Equation 6 for a level 𝛽. Then we have368

ℙ (∀𝑡 ∈ [0, 1], ̂𝜃𝐿1 (𝑡) ≤ 𝑓 𝐿
∗
(𝑡) − ̂𝑓

𝐿
1(𝑡) ≤

̂𝜃𝐿2 (𝑡)) ≥ 1 − 𝛼𝛽.

The proof is given in Appendix.369

This defines a confidence band which can be defined either around ̂𝑓1
𝐿
:370

𝐶𝐵2(𝑓
𝐿∗) = {∀𝑡 ∈ [0, 1], [ ̂𝑓1

𝐿,𝐿∗
(𝑡) + ̂𝜃𝐿1 (𝑡) ; ̂𝑓1

𝐿,𝐿∗
(𝑡) + ̂𝜃𝐿2 (𝑡)]}

or around ̂𝑓
𝐿max,𝐿∗

2 :371

𝐶𝐵2(𝑓
𝐿∗) = {∀𝑡 ∈ [0, 1], [ ̂𝑓2

𝐿max,𝐿∗(𝑡) + ̄𝜃𝐿1 (𝑡) ; ̂𝑓2
𝐿max,𝐿∗(𝑡) + ̄𝜃𝐿2 (𝑡)]} .

with ̄𝜃𝐿1 (𝑡) = ̂𝑓1
𝐿
(𝑡) − ̂𝑓2

𝐿,𝐿∗
(𝑡) − 𝑑̂𝐿1 (𝑡) − 𝑑̂𝐿,𝐿max

2 (𝑡) and ̄𝜃𝐿2 (𝑡) = ̂𝑓1
𝐿
(𝑡) − ̂𝑓2

𝐿,𝐿∗
(𝑡) + 𝑑̂𝐿1 (𝑡) + 𝑑̂𝐿,𝐿max

2 (𝑡).372

Remark 4.1. The two functions 𝑑̂𝐿1 (𝑡) and 𝑑̂
𝐿,𝐿max
2 (𝑡) are of the same order because they are constructed373

using the same approach. They depend on the length of the samples. To obtain the thinnest band,374

the best strategy is to divide the sample in two sub-samples of equal length 𝑁1 = 𝑁2 = 𝑁/2.375
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The behavior of 𝑑̂𝐿1 was described in Section 3. Let us describe the behavior of 𝑑̂𝐿,𝐿max
2 :376

• ‖𝑑̂𝐿,𝐿max
2 ‖∞ decreases with 𝐿.377

• When 𝐿 > 𝐿𝜀, ‖𝑑̂𝐿,𝐿max
2 ‖∞ is constant with 𝐿 and the probability in Equation 6 is equal to 1.378

• When 𝐿∗ < 𝐿 < 𝐿𝜀, ‖𝑑̂𝐿,𝐿max
2 ‖∞ is constant with 𝐿 when the functions 𝐵𝐿ℓ form an orthonormal379

family. Otherwise, the behavior is erratic.380

This means that when the band defined in Proposition 4.1 is calculated for 𝐿 > 𝐿𝜀, the confidence381

level is 1 − 𝛼 instead of 1 − 𝛼𝛽.382

The advantage of this approach is that the band bias is corrected and the level for the true function 𝑓 𝐿
∗

383

is guaranteed when 𝐿𝜀 is large. This was the main aim of the paper. The main limit of this approach384

is that the band is constructed with samples with half sizes, leading to less precision. This will be385

illustrated in Section 6. Nevertheless, this method gives finer confidence bands than cross-validation,386

and with the right level of confidence.387

A natural question is then the choice of the dimension 𝐿. This is the purpose of the next section.388

4.2 Influence of 𝐿389

This approach produces a collection of debiased confidence bands for different values of 𝐿. The390

confidence bands have different widths but the same confidence level 1− 𝛼𝛽. It is therefore natural to391

want to select one of them. This means we want to select the best dimension 𝐿 among the collection392

{𝐿min, … , 𝐿max}. We need to define what “best” means. It is quite intuitive to want to focus on the393

finest band, fine in the sense of a certain norm. Here we consider the infinite norm of the width394

of the confidence band. This gives preference to smooth bands. We therefore define the following395

criteria for selecting 𝐿.396

𝐿̂ = argmin
𝐿

{sup
𝑡
| ̂𝜃𝐿2 (𝑡) − ̂𝜃𝐿1 (𝑡)|} = argmin

𝐿
{sup

𝑡
|𝑑̂𝐿(𝑡) + 𝑑̂𝐿,𝐿max(𝑡)|} . (7)

This global approach guarantees that each band of the collection is debiased and then the dimension397

is selected. It will be illustrated in Section 6.398

In the next section, instead of debiasing each band, we employ another strategy focusing on the399

construction of a selection criteria that will guarantee that the bias is negligible.400

5 Method 2: Selection of the best confidence band with a criteria401

taking into account the bias402

In this section, we propose a new method in the non asymptotic setting to provide a confidence band403

of 𝑓 𝐿
∗
without correction the bias but taking it into account in the selection procedure.404

Our method uses the collection of confidence bands defined in Section 3. Instead of correcting their405

bias, the strategy is to propose a selection criterion that is a trade-off between this bias and the406

dimension of the basis. To do this, we propose a new heuristic criterion linked to the definition of407

the band itself, considering the estimation of the band as the estimation of a quantile of a certain408

empirical process. The criterion is inspired by model selection tools for choosing the best dimension409

𝐿. In the following, we assume that 𝐿max is large enough such that 𝑓𝐿max,𝐿∗ = 𝑓 𝐿
∗
.410

We work on the quantile 𝑞𝐿 introduced in Equation 3, its oracle version 𝑞𝐿
∗
for level 𝐿∗ and its411

estimate 𝑞̂𝐿. All are scalars, belonging to a collection indexed by 𝐿 ∈ {𝐿min, … , 𝐿max}. A natural412
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criterion for choosing the best 𝐿 is that the estimator 𝑞̂𝐿 minimizes the quadratic error 𝔼 (‖𝑞𝐿
∗
− 𝑞̂𝐿‖2).413

However, this quadratic error is unknown as 𝑞𝐿
∗
is unknown. We cannot use it directly.414

Instead, we study ‖𝑞̂𝐿max − 𝑞̂𝐿‖2. While the theoretical quadratic error 𝔼 (‖𝑞𝐿
∗
− 𝑞̂𝐿‖2) decreases when415

𝐿 < 𝐿∗ and increases when 𝐿 > 𝐿∗, the ‖𝑞̂𝐿max − 𝑞̂𝐿‖2 approximation to this error always decreases416

when 𝐿 > 𝐿∗, as illustrated in Section 6.417

We see a behavior similar to a bias, high when the dimension is small, and small when the dimension418

is large. Selecting a dimension using this criterion will always overfit the data. We therefore propose419

to penalize this quantity by the dimension 𝐿 divided by the sample size 𝑁, as usual in model selection420

criteria. To do this, we introduce a regularisation parameter 𝜆 > 0 which balances the two terms. A421

natural criterion to select the best 𝐿 is then422

𝑐𝑟 𝑖𝑡(𝐿) = ‖𝑞̂𝐿max − 𝑞̂𝐿‖2 + 𝜆 𝐿
𝑁
.

Then we define423

𝐿̃ = argmin
𝐿

𝑐𝑟 𝑖𝑡(𝐿),

and take the band centered around ̂𝑓
𝐿̃,𝐿∗

:424

𝐶𝐵3(𝑓
𝐿∗) = 𝐶𝐵1(𝑓

𝐿̃,𝐿∗)

This criterion is illustrated in Section 6.5. We also compare with two other standard approaches,425

heuristic as well, namely the cross-validation approach used to select the dimension 𝐿 which mini-426

mizes the reconstruction error, and a thresholding method which keeps the higher dimension 𝐿 with427

large enough coefficients. These two methods are less oriented to the objective of controling the428

level of the selected confidence band.429

6 Simulation study430

In this section, we illustrate the different statements provided along the paper on generated data. First,431

in Section 6.1, we describe the generating data process and illustrate the linear estimator considered432

in this paper. In Section 6.2, we illustrate the first confidence band, for a fixed level, as introduced in433

Section 3. Then, we illustrate the debiased confidence band in Section 6.3, and discuss the model434

selection criterion in Section 6.4, comparing both of them with state-of-the-art methods in Section 6.5.435

We finally study the generalization of the method out of the class of models in Section 6.6.436

6.1 Generating data process437

To illustrate the model, we simulate a regression functional model with 𝑛 = 40 regular timepoints per438

individual and 𝑁 = 25 individuals. In Figure 1, the function 𝑓 (black curve) belongs to the Fourier439

(resp. Legendre and Spline) family with 𝐿∗ = 7 and the noisy individual observations (𝑦𝑖𝑗)1≤𝑖≤𝑁 ,1≤𝑗≤𝑛440

(grey curves) have a functional noise in dimension 𝐿𝜀 = 15, also in the Fourier (resp. Legendre and441

Spline) family on the left plot (resp. middle and right).442

6.2 Confidence band for a fixed level443

The general band for 𝑓 𝐿 derived in Theorem 3.1 is illustrated on Figure 2. It displays on the top row444

several functional data generated under either the Fourier family (left), Legendre (middle) or Spline445

(right), on the middle row the confidence bands of 𝑓𝐿 for different values of 𝐿 ∈ {3, 5, 7, 11} and 15,446
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Figure 1: Functional regression with different bases. We generate a regression functional model
using three different basis families: Fourier (left), Legendre (middle), and Splines (right). The black
curve represents the true mean function, while the gray curves show individual noisy observations.

and on the bottom row the bound 𝑑̂𝐿. On the middle row, the true functions 𝑓𝐿 are displayed in447

black and the confidence bands in color. The bands are very precise for each 𝐿. The behavior of 𝑑̂𝐿448

increases with 𝐿. As 𝑑𝐿 can be seen as a variance, 𝑑̂𝐿(𝑡) is larger on the boundary of the time domain,449

as there are less observations near 0 and 1.450

We also evaluate numerically the levels of the obtained confidence bands. For this, 1000 datasets451

are simulated, the confidence band is estimated for each of them. The empirical confidence level452

is then evaluated as the proportion of confidence bands that contain the true function over 5000453

test timepoints. Table 1 presents the empirical confidence levels for different values of 𝐿 and several454

sample sizes 𝑛 ∈ {40, 150}, and 𝑁 ∈ {10, 25, 60}, and for the 3 basis. When 𝑁 = 25 and 𝑁 = 60, the455

level is the expected one whatever the value of 𝐿. We will see in the next sections that this will not456

be the case for the debiased confidence band. When 𝑁 = 10, the level is too small, especially when 𝐿457

is large. This might be due to the the large number of parameters to be estimated in the covariance458

matrix, with a small number of observations 𝑁.459

6.3 Method 1: confidence bands by correcting the bias460

We illustrate the confidence band of 𝑓 𝐿
∗
given in Proposition 4.1. In Figure 3, top row, we plot461

the confidence bands obtained for different dimensions 𝐿 ∈ {3, 5, 7, 11, 15} with Fourier, Legendre462

and Splines families and 𝛼 = 𝛽 = √0.05 ≈ 0.22. We can see that all the confidence bands are alike.463

Especially, they are unbiased, even for 𝐿 = 3. A larger dimension 𝐿 provides a smoother band. On464

the middle and bottom rows of Figure 3, we illustrate the two terms that enter the confidence band,465

𝑡 ↦ 𝑑̂𝐿1 (𝑡) and 𝑡 ↦ 𝑑̂𝐿,𝐿max
2 (𝑡). Their behavior is the same along time. The function 𝑑̂𝐿1 (𝑡) can be seen466

as a variance, this is why it is larger near 0 and 1 where there are less observations. The function467

𝑑̂𝐿,𝐿max
2 (𝑡) is smaller than 𝑑̂𝐿1 (𝑡) because it controls the remaining rest after the projection. Note that468

as expected when 𝐿 > 𝐿𝜀, 𝑑̂𝐿,𝐿max
2 (𝑡) is close to 0. As explained before, the influence of 𝐿 is not the469

same for the two functions. When 𝐿 increases, 𝑑̂𝐿1 (𝑡) increases while 𝑑̂
𝐿,𝐿max
2 (𝑡) decreases.470

In Table 2, we simulate 1000 repeated datasets with the Legendre family and with two sample sizes471

𝑛 = 40 and 𝑛 = 150 and 𝑁 = 25. For each dataset, we compute the confidence band defined in472

Proposition 4.1 with a theoretical confidence level of 1 − 𝛼𝛽 = 0.95 and for different values of 𝐿.473
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Figure 2: Confidence bands for 𝑓 𝐿. For the three basis families (Fourier, on the left, Legendre, on the
middle, and Splines on the right) we display: (top row) the observed functional data; (middle row)
the estimated confidence bands for increasing values of L (3, 5, 7, 11 and 15); and (bottom row) the
associated bound dL.
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the confidence band CB is estimated over 1000 repetitions, for alpha = 0.05. Confidence bands are
calculated with the Fourier (top), Legendre (middle) and Splines (bottom) basis families. Each row
corresponds to a different number of basis functions L, and each column to a different pair of sample
sizes (n,N).

L n/N

40/10 150/10 40/25 150/25 40/60 150/60

3 0.930 0.933 0.939 0.942 0.952 0.951
5 0.921 0.913 0.927 0.927 0.950 0.951
7 0.926 0.926 0.931 0.930 0.948 0.950
11 0.921 0.911 0.933 0.933 0.951 0.951
15 0.915 0.901 0.926 0.927 0.943 0.943

L n/N

40/10 150/10 40/25 150/25 40/60 150/60

3 0.926 0.928 0.935 0.937 0.947 0.945
5 0.925 0.926 0.928 0.937 0.946 0.943
7 0.924 0.929 0.927 0.937 0.923 0.939
11 0.927 0.924 0.923 0.931 0.936 0.942
15 0.929 0.929 0.931 0.935 0.942 0.944

L n/N

40/10 150/10 40/25 150/25 40/60 150/60

3 0.929 0.930 0.927 0.931 0.936 0.939
5 0.921 0.917 0.943 0.944 0.941 0.946
7 0.911 0.915 0.939 0.942 0.952 0.950
11 0.913 0.911 0.948 0.951 0.952 0.949
15 0.903 0.900 0.950 0.946 0.952 0.955

17



su
bm
itte
d

Fourier Legendre Splines

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

−10

−5

0

5

10

Time

f

Fourier Legendre Splines

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00

1

2

3

4

Time

d.
L

Fourier Legendre Splines

0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
0

1

2

3

Time

d.
L.

Lm
ax

dimension 3 5 7 11 15

Figure 3: Visualization of confidence bands by correcting the bias. For a given dataset, we plot
several confidence bands (top row), functions dL (middle row) and dLLmax (bottom row). Bands
and functions are estimated with Fourier (left column), Legendre (middle column) and Spline (right
column) basis and several dimensions L (3, 5, 7, 11, 15), and Lmax = 25.
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Table 2: Empirical coverage of CB2. The table reports the empirical level of confidence of the
proposed confidence band CB2, computed for various values of L (rows) and n (columns), with fixed
N=25, and various basis (top: Fourier, middle: Legendre, bttom: Splines). The nominal confidence
level is set to 0.05, using parameters alpha=beta=0.2, such that the combined coverage is 1-0.95.

L n

40 150

3 0.958 0.958
5 0.966 0.966
7 0.980 0.980
11 0.983 0.983
15 0.723 0.723

L n

40 150

3 0.925 0.925
5 0.948 0.948
7 0.951 0.951
11 0.923 0.923
15 0.747 0.747

L n

40 150

3 0.953 0.953
5 0.973 0.973
7 0.963 0.963
11 0.910 0.910
15 0.728 0.728

Then the confidence level is approximated as the proportion of confidence bands containing the true474

function 𝑓 over 5000 test timepoints. Remark that when 𝐿 < 𝐿𝜀, the level is the expected one, that475

is 0.95. When 𝐿 > 𝐿𝜀, the level is no more ensured, as explained before. Indeed the term 𝑑𝐿,𝐿
max

is476

mainly equal to 0 when 𝐿max is large enough, and the level is close to 1 − 𝛼 instead of 1 − 𝛼𝛽. This is477

not the case for the band in Section 3, as this is due to the correction of the bias.478

We illustrate the different terms involved in Equation 7 in Figure 4: we plot for a given dataset,479

the infinity norm of the width of the band 𝑑̂𝐿(𝑡) + 𝑑̂𝐿,𝐿max(𝑡) (top), of 𝑑̂𝐿(𝑡) (middle) and 𝑑̂𝐿,𝐿max(𝑡)480

(bottom) functions obtained with the Fourier (left column), Legendre (middle column) and Spline481

(right column) basis. As already said, ‖𝑑̂𝐿‖∞ increases with 𝐿 while ‖𝑑̂𝐿,𝐿max‖∞ decreases (and is zero482

when 𝐿 > 𝐿𝜀). The width of the band wrt 𝐿 does not have a 𝑈-shape, as expected. It is thus difficult483

to minimize this criterion and the selection of 𝐿̂ is thus not stable. But again, whatever the value484

of 𝐿̂, the corresponding band is debiased in the collection. We will see in the next sections that its485

width is smaller than standard approaches. The performance of the selection is also illustrated in the486

next section.487

6.4 Method 2: a model selection criterion to take into account the bias488

In Figure 5, we illustrate the behavior of the selection criterion introduced in Section 5 on simulated489

data, with 𝜆 ∈ {0, 0.5, 1, 2} for the three basis. We can see that 𝐿̃ is overestimated. When considering490
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Figure 4: Norm of the confidence band width and associated bounds. For a given dataset, we compute:
(top row) the norm of the width of the confidence band; (middle row) the norm of the function dL;
and (bottom row) the norm of the function dLLmax, for various dimensions L. Results are shown for
the Fourier (left column), Legendre (middle column), and Splines (right column) basis families.

nested spaces, it ensures that 𝐿̃ tends to be larger than 𝐿∗ and thus the confidence band is automatically491

unbiased.492

6.5 Comparison of the methods with the state-of-the-art493

We evaluate the performance of the two selection criteria introduced in this paper, and compare494

the two strategies 𝐶𝐵2 and 𝐶𝐵3 with some standard approaches. More precisely, we simulate 1000495

repeated datasets. The different confidence bands and the norm of their widths are computed for496

several 𝐿. We apply the selection criteria and plot the distribution of the estimated dimension in497

Figure 6, for the three basis families, for several model selection criteria: 𝐿̂, 𝐿̃, cross validation and498

hard thresholding. The dimension 𝐿̂ is almost always larger than the true 𝐿∗ = 7. The fact that it is499

larger is not a problem because the selected band is unbiased and has the correct level as soon as500

𝐿𝜀 is large. However, the criterion tends to select a band that is (too) smooth. We can see that the501

selected dimension 𝐿̃ is smaller in distribution, and closer to the true value than 𝐿̂. In addition, as we502

then use the confidence band of Section 3, the confidence level is guaranteed to be as expected. The503

model selected by cross validation is rather good, for all the basis considered. On the other hand, the504

model selected by hard thresholding is not good, particularly for a non orthonormal basis.505

The reformulation of the band around ̂𝑓
𝐿max,𝐿∗

2 is close to the band presented in Section 3 for506

𝐿 = 𝐿max, that is a band centered around ̂𝑓
𝐿max,𝐿∗ . A natural question is to understand what is507

the gain by doing so instead of using the band from Section 3 with 𝐿 = 𝐿max, namely the band508

[ ̂𝑓
𝐿max,𝐿∗(𝑡) − 𝑑̂𝐿max(𝑡); ̂𝑓

𝐿max,𝐿∗(𝑡) + 𝑑̂𝐿max(𝑡)]. To do that, we have to understand the behavior of the509

different terms. As it is difficult to compare theoretically the width of the two bands, we compare510

them using simulations. For 1000 repeated datasets, we compute several confidence bands: the 𝐶𝐵1511

band constructed in Section 3 with 𝐿max, the 𝐶𝐵2 band defined in Proposition 4.1 with 𝐿̂, the 𝐶𝐵3512

band defined in Section 5 with 𝐿̃ and the ideal (and not accessible) band constructed in Section 3 with513

the true 𝐿∗. In Figure 7, we present boxplots of the norms of the band width with 𝐿̂, 𝐿max, 𝐿∗ and514
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Figure 5: Behavior of selection criteria as a function of model dimension. For a given simulated
dataset, we display the evolution of the selection criteria with respect to the dimension L, for several
values of the regularization parameter lambda. Results are shown for the Fourier (left), Legendre
(middle), and Splines (right) basis families.

Table 3: Comparison with the state-of-the-art for the empirical confidence level. The table reports
the performance of the proposed confidence band CB3, estimated over 1000 repetitions, for various
model selection criteria and competitive methods (rows) and for various basis families (columns).
Results are shown for alpha=0.05, with n=40 and N=25.

model Fourier Legendre Splines

Lstar 0.931 0.932 0.940
Lmax 0.926 0.932 0.949
Lhat 0.972 0.924 0.904
Ltilde 0.933 0.926 0.926
L.L0 0.895 0.922 0.901

L.CV 0.913 0.918 0.831
Mean 0.926 0.932 0.950
FFSCB 0.922 0.941 0.950
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Figure 6: Distribution of the selected model dimension across selection methods. Based on 1000
simulated datasets, we report the distribution of the estimated dimension L for four model selection
methods: from top to bottom — the debiased confidence band CB2 with Lhat, the band CB3 with
Ltilde , cross-validation, and hard-thresholding. The true model dimension is Lstar = 7.

𝐿̃. We also use the empirical mean and the method FFSCB Liebl and Reimherr (2023). The width of515

the confidence band with the true 𝐿∗ is smaller, which is expected but unfortunately not achievable.516

The width of the confidence band 𝐶𝐵1 is smaller than that of the band 𝐶𝐵2. This can be explained by517

the fact that we estimate two different quantities, on smaller datasets, for more conservative levels518

(1 − 𝛼 and 1 − 𝛽 respectively) in order to finally achieve the confidence level of 1 − 𝛼𝛽. This also519

explains why the cross validation and hard-thresholding methods, which also divide the sample into520

two parts, do not give good results either. The model given by the heuristic model selection criterion521

𝑐𝑟 𝑖𝑡 achieves good performance. Note that the width of the selected model 𝐿̃ is better than the width522

of the confidence band with a large level 𝐿max, which one should have used to avoid model selection.523

The empirical mean and the band given by FFSCB are a bit larger.524

Fourier Legendre Splines

Ls
ta

r

Lm
ax

Lh
at

Lt
ild

e
L.

CV
L.

L0

FFSCB
M

ea
n

Ls
ta

r

Lm
ax

Lh
at

Lt
ild

e
L.

CV
L.

L0

FFSCB
M

ea
n

Ls
ta

r

Lm
ax

Lh
at

Lt
ild

e
L.

CV
L.

L0

FFSCB
M

ea
n

2

4

6

2.5

5.0

7.5

10.0

12.5

2

4

6

dimension

B
an

d.
w

id
th

Figure 7: Width of the confidence bands accross selection methods. Boxplots show the distribution
of the confidence band width over 1000 repetitions, for the dimension selected by the various criteria
introduced in this paper (as well as standard baselines). Results are shown for the Fourier (left),
Legendre (middle), and Splines (right) basis families.

6.6 Generalization out of the model525

We now illustrate the behaviour of the bands when the basis used for estimation is poorly specified.526

We simulate 1000 data sets with a spline basis and estimate the confidence bands with the Fourier527

and Legendre basis, for different values of 𝑛 and 𝑁. The coverage rates are presented in Table 4.528
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Table 4: Empirical coverage of confidence bands under model misspecification. The empirical
confidence level is estimated over 1000 repetitions. Data are generated using a Splines basis, while
confidence bands are computed using the Fourier (top) and Legendre (bottom) basis families. Each
row corresponds to a different value of L, and each column to a different pair of sample sizes (n,N).

L n/N

50/10 150/10 50/40 150/40

5 0.057 0.057 0.016 0.017
7 0.113 0.107 0.042 0.039
11 0.232 0.205 0.096 0.077
15 0.298 0.254 0.153 0.118

L n/N

50/10 150/10 50/40 150/40

5 0.133 0.142 0.031 0.035
7 0.684 0.679 0.415 0.429
11 0.914 0.910 0.939 0.940
15 0.916 0.912 0.951 0.951

Table 5: Empirical coverage of confidence bands across selection methods under model misspecifica-
tion. The empirical confidence level is estimated over 1000 repetitions. Data are generated using a
Splines basis, while confidence bands are computed using the Fourier (top) and Legendre (bottom)
basis families. The rows correspond to different model selection criteria and dimensions L, and the
columns to various combinations of sample sizes (n,N).

L n=40, N=25 n=150, N=25

L tilde 0.098 0.117
L.CV 0.090 0.084

L n=40, N=25 n=150, N=25

L tilde 0.942 0.950
L.CV 0.588 0.593

The Fourier basis does not give a correct rate. On the other hand, the Legendre basis gives very529

satisfactory coverage rates for 𝐿 > 11.530

Next, we illustrate the 𝐿̃ dimension selection method and compare it to the cross-validation method.531

Table 5 presents the coverage rates of the corresponding confidence bands estimated with the Fourier532

and Legendre basis, in the case 𝑁 = 25 and 𝑛 ∈ {40, 150}. Once again, we see that the Fourier533

basis does not give good results, either by cross-validation or by 𝐿̃. On the other hand, with the534

Legendre basis, the 𝐿̃ method gives a satisfactory coverage rate, even if it is underestimated, whereas535

the cross-validation method is very poor. Moreover, the widths of the confidence bands selected536

with 𝐿̃ and by cross validation are represented by boxplot in Figure 8. It can be seen that the cross-537

validation approach provides wider bands, even though their confidence level is not guaranteed. The538

method proposed in this paper provides a narrower band with a correct level of confidence. We thus539

recommend to use the Legendre family with the criteria 𝐿̃.540
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Figure 8: Width of confidence bands with model selection under model misspecification. The average
width of the confidence bands is evaluated over 1000 repetitions. Data are generated using a Splines
basis, while bands are computed with the Fourier (top) and Legendre (bottom) basis families. Rows
correspond to combinations of model selection criteria and dimensions L, and columns to different
sample size pairs (n,N).

7 Real data analysis541

In this section, we illustrate the proposed method on the Berkeley Growth Study data. It consists of542

the heights in centimeters of 39 boys at 31 ages from 1 to 18. We approximate these curves by the 3543

basis Legendre, Splines and Fourier. We select the level of each basis using the method introduced in544

Section 5.545
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Figure 9: Real data analysis example. We display the confidence bands for Fourier (left), Legendre
(middle) and Splines (right) basis on the Berkeley Growth Study data. Black curves correspond to the
confidence bands with 𝐿𝑚𝑎𝑥, while colored one are the confidence bands with L tilde.

In Figure 9, we display the confidence bands associated with Section 3 in black and those associated546

with Section 5, for the three basis. As the data is not periodic, the Fourier basis is meaningless, as is547

the associated confidence band, whatever the dimension considered. Splines and Legendre basis give548

similar confidence bands. Analyzing the width of the bands in Table 6, compared to that obtained549

with 𝐿max, we find that they are less smooth but also smaller, and from our empirical study we guess550

that it makes a trade-off between bias and variance.551
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Table 6: Real data analysis example, Berkeley Growth Study data. We display the width of the
confidence bands for Fourier, Legendre and Splines basis for the confidence band of Section 3 with
Lmax and the confidence band of Section 5. We also precise the dimension of the selected model.

Basis

Legendre Splines Fourier

Width Lmax 2.12 2.12 2.20
Width selected 1.99 1.95 2.08
Model selected 6.00 5.00 7.00

8 Conclusion552

This paper discusses the construction of confidence bands when considering a functional model.553

Depending on the nature of the family (an orthogonal or orthonormal basis, or simply a vector space),554

the theoretical guarantees of the linear estimator are recalled and illustrated. Several confidence555

bands are then proposed. An extensive experimental study on Fourier, Legendre, and Spline basis556

illustrates the theoretical and methodological propositions, and a real data study is proposed to557

conclude the paper.558

First, when considering a functional family with fixed dimension, we discuss the confidence band559

derived from Sun and Loader (1994). It is biased if the dimension is not high enough to approximate560

well the true function. We then propose a new confidence band that corrects this bias. To do this,561

the bias is estimated and the additional randomness is controlled. A selection criterion is proposed562

to select the best dimension. Unfortunately, the two types of randomness lead to a wider confidence563

band, and this result is therefore no more interesting than the naive one, which consists of taking564

the largest possible dimension 𝐿max. Finally, a heuristic selection criterion is proposed to select the565

dimension on the first confidence band, which has not corrected the bias. It takes into account the566

bias as well as the variance, to select a moderate dimension. Numerical experiments show that this567

criterion, combined with the Legendre basis, achieves the best performance when considering the568

confidence level and the width of the corresponding simultaneous confidence band.569

An interesting next step, but out of the scope of this paper, is a theoretical study of this criterion.570

No result, to our knowledge, exists for confidence bands with the supremum norm. The Euclidean571

norm has been extensively studied, but is not of interest here, where we want to ensure that the572

tube is valid as a whole. The supremum norm, on the other hand, is difficult to study theoretically.573

Furthermore, a key point here is the randomness of the criterion, which must also be taken into574

account, through an oracle inequality for example.575
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9 Appendix: proofs636

9.1 Proof of Proposition 2.1637

Let us prove the first point. We have638

𝔼(𝜇̂𝐿) = (B𝑇
𝐿B𝐿)−1B𝑇

𝐿𝔼(y) = (B𝑇
𝐿B𝐿)−1B𝑇

𝐿B𝐿∗𝜇𝐿
∗
=∶ 𝜇𝐿.

The theory of the linear model gives that the variance of 𝜇̂𝐿 is equal to 𝜎2(B𝑇B)−1B𝑇ΣB(B𝑇B)−1 with639

Σ = 𝐷𝑖𝑎𝑔(Σ1, … , Σ𝑁) the 𝑛𝑁 × 𝑛𝑁 covariance matrix of y. So finally, we have640

𝜇̂𝐿 ∼ 𝒩(𝜇𝐿, 𝜎2Σ𝐿,𝐿
𝜀

𝐵 ) .

Now we can easily deduce the distribution of 𝑓̂
𝐿
(𝑡), for each 𝑡 ∈ [0, 1]:641

𝑓̂
𝐿
(𝑡) − f𝐿(𝑡) ∼ 𝒩 (0, 𝜎2𝐵(𝑡)Σ𝐿,𝐿

𝜀

𝐵 𝐵(𝑡)𝑇) .

To prove that (𝑓̂
𝐿
− 𝑓 𝐿) is a Gaussian process, we consider any finite sequence of times (𝑡1, … , 𝑡𝑑) ∈642

[0, 1]. The sequence (𝑓̂
𝐿
(𝑡1) − 𝑓 𝐿(𝑡1), … , 𝑓̂

𝐿
(𝑡𝑑) − 𝑓 𝐿(𝑡𝑑)) is Gaussian, centered, and the covariance is643

equal to 𝑐𝑜𝑣(𝑓̂
𝐿
(𝑡1) − 𝑓 𝐿(𝑡1), 𝑓̂

𝐿
(𝑡2) − 𝑓 𝐿(𝑡2)) = 𝜎2𝐵(𝑡1)Σ

𝐿,𝐿𝜀
𝐵 𝐵(𝑡2)𝑇. Thus, the process is Gaussian.644

9.2 Proof of Theorem 3.2645

For all 𝑡, for all 𝜔 ∈ Ω,646

lim
𝑛→+∞

𝑓𝐿𝑛 (𝑡) − 𝑓 𝐿(𝑡) = 0

which means for all 𝜀 > 0, there exists 𝑁0 such that for all 𝑛 > 𝑁0,647

|𝑓𝐿(𝑡) − 𝑓 𝐿(𝑡)| ≤ 𝜀.

Then, we have, with probability 1 − 𝛼,648

|𝑓̂
𝐿
(𝑡) − 𝑓𝐿(𝑡)| + |𝑓𝐿(𝑡) − 𝑓 𝐿(𝑡)| ≤ 𝑑̂𝐿(𝑡) + 𝜀

with 𝑑̂𝐿(𝑡) = ̂𝑐𝐿√𝐶̂𝐿(𝑡, 𝑡)/𝑁 and ̂𝑐𝐿 defined as the solution of Equation 4.649

Then, with probability larger than 1 − 𝛼,650

|𝑓̂
𝐿
(𝑡) − 𝑓𝐿(𝑡) + 𝑓𝐿(𝑡) − 𝑓 𝐿(𝑡)| ≤ 𝑑̂𝐿(𝑡) + 𝜀

9.3 Proof of Proposition 4.1651

To simplify the notations, let us denote 𝑎(𝑡) = 𝑓𝐿(𝑡)− ̂𝑓
𝐿
1(𝑡) and 𝑏(𝑡) = 𝑓𝐿max,𝐿∗(𝑡)−𝑓𝐿(𝑡)− ( ̂𝑓

𝐿max,𝐿∗

2 (𝑡)−652

̂𝑓
𝐿
2(𝑡)). We have653

𝑃 (∃𝑡|𝑎(𝑡) + 𝑏(𝑡)| ≥ 𝑑̂𝐿1 (𝑡) + 𝑑̂𝐿,𝐿max
2 (𝑡)) ≤ 𝑃 (∃𝑡|𝑎(𝑡)| + |𝑏(𝑡)| ≥ 𝑑̂𝐿1 (𝑡) + 𝑑̂𝐿,𝐿max

2 (𝑡))

= 𝑃 (∃𝑡|𝑎(𝑡)| ≥ 𝑑̂𝐿1 (𝑡)) 𝑃 (∃𝑡|𝑏(𝑡)| ≥ 𝑑̂𝐿,𝐿max
2 (𝑡)) = 𝛼𝛽.

The last equality holds thanks to the independence of the two sub-samples.654
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10 Appendix: more experiments655

The properties of the coefficients are illustrated in Figure 10. The true dimension is 𝐿∗ = 11. Three656

families are considered, Fourier, Legendre and Splines. The plots display the absolute difference657

between the coefficients 𝜇𝐿
∗

ℓ and the projected coefficients 𝜇𝐿, for different ℓ in x-axis and for different658

values of 𝐿 and 𝑛 in the y-axis, namely a case with 𝐿 < 𝐿∗ and two values of 𝑛: 𝐿 = 7, 𝑛 = 20 and659

𝐿 = 7, 𝑛 = 100; and a case with 𝐿 > 𝐿∗ and two values of 𝑛: 𝐿 = 15, 𝑛 = 20 and 𝐿 = 15, 𝑛 = 100.660

The absolute difference is represented as a gradient of color, this gradient being adapted to each661

functional family. We can see that as Legendre (resp. Fourier) are orthonormal (resp. orthogonal)662

families, the differences are close to 0 when 𝐿 = 15, whatever the values of 𝑛. When 𝐿 < 𝐿∗, the663

difference is close to 0 when 𝑛 is large. This property does not hold for the spline family, which is664

not orthogonal.665
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Figure 10: Illustrative example. The true dimension is 11, we generate the coefficients with three
families, Fourier (which is orthogonal), Legendre (which is orthonormal) and the splines (which are
not orthogonal wrt the standard scalar product). In the y-axis, two dimensions of the family (7 or 15)
and two numbers of timepoints (20 or 100) are compared. We plot in x-axis the value of the absolute
difference between the true coefficients and their approximations for the first 7 coefficients of the
basis. The color scale is adapted to each functional basis.
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